Unit 1 - Day 13L - Algebraic and Geometric Proofs

<u>Agenda</u>

- Go over HW
- Warm Up Quiz
- Notes 1.13

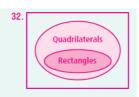
HW - Due Monday

Complete Axiom Sheet

Problem Set 1.13

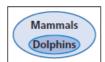
	<i>G</i>)
1.	The statement $4T \cong 4T$ is an example of the property. (circle your answer)
	A) Transitive B) Reflexive C) Substitution D) Biconditional
2.	Draw or describe a counterexample to the conditional statement, "If two angles are complementary, then each angle measures 45° ."
	1.2 900
	NO TOP TO THE PROPERTY OF THE

P. 77: #19 P. 85-86: #32,34;


P.100-101:#11,15,18,23,24,25,29,33,36,40,53,61

Show that each conjecture is false by finding a counterexample.

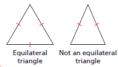
19. Every pair of supplementary angles includes one obtuse angle. $\mathbb{M} \angle 1 = \mathbb{M} \angle 2 = 90^{\circ}$


Draw a Venn diagram.

32. All rectangles are quadrilaterals.

Write a conditional statement from each Venn diagram.

34.


34. If an animal is a dolphin, then it is a mammal.

P.100-101:#11,15,18,23,24,25,29,33,36,40,53,61

- A parallelogram is a rectangle if and only if it has four right angles.
 - Conditional: If a □ is a rect., then it has 4 rt. ∠. Converse: If a □ has 4 rt. ∠, then it is a rect.
- **15.** If a triangle contains a right angle, then it is a right triangle. Converse: If a triangle is a right triangle, then it contains a right angle. Biconditional: A triangle is a right triangle if and only if it contains a right angle.
- 23. If x > 0, then $x^2 > 0$. no; possible answer: x = -2
- 18. A circle is the set of all points in a plane that are a fixed distance from a given point.

<u>Biconditional</u>: A circle is a set of all points in a plane if and only if the points are at a fixed distance from a given point.

24.

25. Suure

- 24. An equil. \triangle is a \triangle with 3 \cong sides.
- 25. A square is a quad. with 4 ≅ sides and 4 rt. ∠.
- 29. An angle is a geometric object formed by two rays.
- 29. Possible answer: The definition does not say that the rays have a common endpoint.

Complete each statement to form a true biconditional.

- **33.** The circumference of a circle is 10π if and only if its radius is ? . **5**
- **36. Write About It** Use the definition of an angle bisector to explain what is meant by the statement "A good definition is reversible."

36. Possible answer: If you write the def. as a biconditional, "A ray is an ∠ bisector iff it divides the ∠ into 2 ≅ ≜," then you can use it either forward or backward. If you know the ray is an ∠ bisector, then you can conclude that the 2 ≜ formed are ≅. If you know that 2 adj. ≜ formed by a ray are ≅, then you can conclude that the ray is an ∠ bisector.

- 40. Which conditional statement can be used to write a true biconditional?
 - (A) If a number is divisible by 4, then it is even.
 - (B) If a ratio compares two quantities measured in different units, the ratio is a rate.
 - (C) If two angles are supplementary, then they are adjacent.
 - ① If an angle is right, then it is not acute.

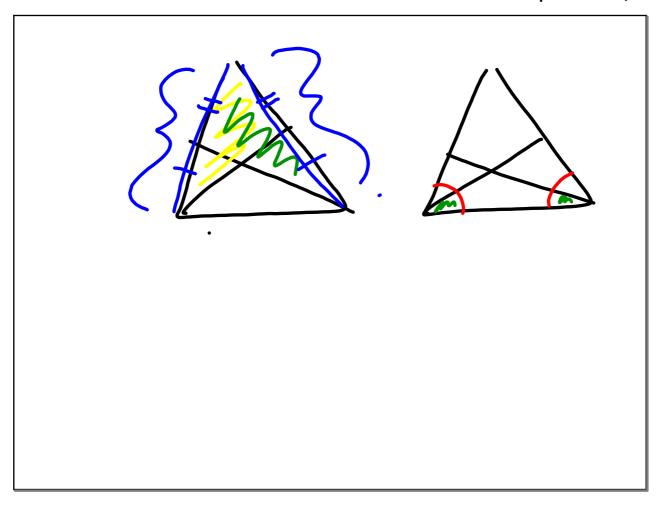
53. If *x* is prime, then x + 2 is also prime.

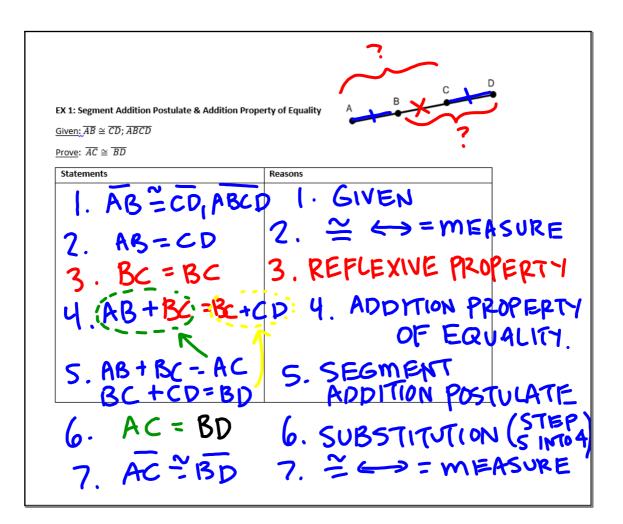
53. F; possible answer: x = 2

Geometry + LAB Name:	_ Date:	_ Section:	
2-2R/2-3L Notes Algebraic Proofs			

In order to prove a conjecture true, we must use <u>deductive reasoning</u>, which is using known facts and sound logic with precise definitions, postulates, and theorems to draw conclusions.

Deductive = USE rules vs. Inductive MAKEules.

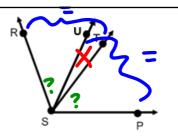

Formal 2-Column Geometric Proof:


Statements	Reasons	
 Detailed steps to solve or prove the problem. 	The definitions, postulates, properties, and theorems that allow you to make the corresponding statement and link your.	
 Names of angles, segments, lines, rays, etc. 	thinking between steps. **Look at what changes between steps.	
 Last statement is always what you are asked to prove SPECIFICALLY. 	 Does not include names of figures – be general. 	

Refer to your lesson summaries and axiom pages for examples of & additional reasons used in proofs.

- Angle Addition Postulate/Segment Addition Postulate
- Reflexive & Transitive Properties
- · Algebraic Properties & Substitution

3

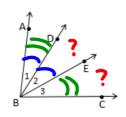


EX 2: Angle Addition Postulate & Subtraction Property of Equality

Given: $m \angle RST = m \angle USP$

Prove: $m \angle RSU = m \angle TSP$

Statements	Reasons
1. (mxRSU+mxUST=n (mxUST+mxTSP=n	ARST 1. ANGLE
	TAUSP ADDITION POSTULATE
	2. GIVEN
3. marsut = mausta maust matsp	- 3. SUBSTITUTION
MAUSI MAISP	(STEP IN(0 4)
'	4. REFLEXIVE PROP.
S. MXRSU = MXTSP	5. SUBTRACTION PROP
	OF EQ.


EX 3: Application of Properties

<u>Given:</u> ∠2 ≅ ∠1, ∠1 ≅ ∠3

TRANSITIVE PROPERTY

Prove: $\angle 2 \cong \angle 3$

PROPERTY OR SUBSTITUTION

Statements	Reasons	
1. 42 = x1, x1 = x3 2. 42 = x3	1. GIVEN 2. TRANSITIVE PROPERTY	

EX 4: Segment Addition Probable & Addition Property of Equality

Given; $\overline{AE} \cong \overline{CE}$; $\overline{EB} \cong \overline{ED}$; \overline{AEB} ; \overline{CED} Prove: $\overline{AB} \cong \overline{CD}$ Statements

Reasons

Reasons

I. AE=CE ER=ED | . GIVEN

2. AEB, CED | 2. = MEASURE

3. AE+EB=CE+ED | 3. ADDITION PROPERTY

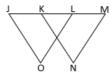
OF EQ.

4. AE+EB=AB | 4. SEGMENT | APDITION POSTULATE

5. AB = CD | 5. SUBSTITUTION | (STEP 4 INTO 3)

6. AB=CD | 6. = \leftarrow = MEASURE

Problem Set 2-2R/2-3L


For questions 1-4, identify the property being used:

- 1. If AB = CD and CD = EF, then AB=EF. _
- 2. If AB = CD and EF = CD, then AB=EF. _
- 3. $\angle TRY \cong \angle TRY$
- 4. If $m \angle 1 = m \angle 2$ and $m \angle 3 = m \angle 3$ then $m \angle 1 + m \angle 3 = m \angle 2 + m \angle 3$.

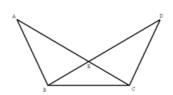
For questions 5-8, complete the following proofs:

5. Given: $\angle J \cong \angle OLJ$; $\angle OLJ \cong \angle M$

Prove: $\angle J \cong \angle M$

Statements	Reasons	
 ∠J ≅ ∠OLJ 	1.	
2. $\angle OLJ \cong \angle M$	2.	
3. $\angle J \cong \angle M$	3.	

6. <u>Given:</u> \overline{NMQ} , \overline{PQR} , NO = PR, NM = PQ


Prove: MO = QR

	N	M		Q
P	Q.	•	Ŗ	•
•	•			

Statements	Reasons
1. \overline{NMQ} , \overline{PQR} , $NO = PR$	1.
2. NM + MO = NO, PQ + QR = PR	2.
3. NM + MO = PQ + QR	3.
4. NM = PQ	4.
5. $MO = QR$	5.

7. Given: $m \angle ABD = m \angle DCA$; $m \angle DBC = m \angle ACB$

Prove: $\angle ABC \cong \angle DCB$

Statements	Reasons
1.	1. Given
$2. \ m \angle ABD + m \angle DBC = m \angle DCA + m \angle ACB$	2.
3.	3. Angle Addition Postulate
$4. \ m \angle ABC = m \angle DCB$	4.
5.	5.

8. Given: $\overline{JK} \cong \overline{ML}$ Prove: $\overline{JL} \cong \overline{MK}$ (Hint: how is this really just a segment problem?)	J K L M
Statements	Reasons

1-13 SB LAB.notebook	September 21, 2017	