Lesson 11-9 Segment Relationships in Circles

AGENDA:
- Check & Review Homework 11-8
- Notes and Guided Practice

HOMEWORK:
- p. 796 # 12, 13, 22, 23, 25

\[3x + 3x + 4x + 5x = 360\]
\[15x = 360\]
\[x = 24\]

\[m\angle 1 \quad 48\]
\[m\angle 2 \quad 36\]
\[m\angle 3 \quad 60\]
\[m\angle 4 \quad 36\]
\[m\angle 5 \quad 144\]
\[m\angle 6 \quad 96\]
\[m\angle 7 \quad 84\]
\[m\angle 8 \quad 96\]
\[m\angle 9 \quad 108\]
\[m\angle 10 \quad 72\]
\[m\angle 11 \quad 12\]
11-9 Notes: Segment Relationships in Circles: Chord-Chord Product

MEASUREMENTS
- Arc-angle relationships are measured in **DEGREES**.
- Segments and chords are measured in **LINEAR UNITS** such as inches or centimeters.
- In each problem, identify whether you are asked to find an angle measure, an arc length, or a segment length:

ARC MEASURE

\[\theta \]

\[\theta = \frac{1}{2} (\theta_1 + \theta_2) \]

SEGMENT LENGTH

\[(\text{cm}) \]

ANGLE MEASURE

\[\theta \]

\[\theta = \frac{1}{2} (\theta_1 - \theta_2) \]

SEGMENT MEASURE

\[(\text{cm}) \]

\[x = \frac{1}{2} (204 - 242) \]

\[x = \frac{1}{2} (204 - 242) \]

TYPES OF SEGMENT RELATIONSHIPS

1) **CHORD-CHORD PRODUCT THEOREM**

- **\(\Delta I \sim \Delta II \)**
- **SSS**
- **SAS**
- **AA**

- **VERTICAL \(\angle \)'S**
- **INSCRIBED**
- **\(\angle \)'S** FROM \(\angle \)'S IN A \(\bigcirc \)
- **SAME ARC IN A \(\bigcirc \)**
- **\(\Delta \)'S**

- **\(\Delta I \sim \Delta II \)**
- **\(\frac{a}{b} = \frac{x}{y} \)**
- **\(\sim \Delta \)'S**

- **PROPORTIONAL**
- **CORRESPONDING SIDES**

- **CROSS PRODUCTS**
- **PROPERTY**
- **\(a \cdot b = y \cdot x \)**

- **PART : PART = PART : PART**
2) TANGENT-TANGENT SEGMENT CONGRUENCY
 (Review)

\[\Delta I \cong \Delta II \text{ by } \]
\[\text{RADIANS} \]
\[\text{TANGENT} \]
\[\text{Q PT TANGENCY} \]
\[\rightarrow \text{RT } \&'s \rightarrow \]
\[\text{RT } \Delta 's \]
\[AE \cong CE \text{ by CPCTC} \]

CHORD-CHORD PRODUCT

If 2 chords intersect in a circle, then the products of the segments of the chords are equal.

EXAMPLE: Find each chord length

\[PQ \cdot QR = SQ \cdot QT \]
\[(6)(4) = x(8) \]
\[24 = 8x \]
\[3 = x \]

PART \cdot PART = PART \cdot PART

\[PR = 6 + 4 \]
\[PR = 10 \text{ units} \]

\[ST = SQ + QT \]
\[ST = 3 + 8 \]
\[ST = 11 \text{ units} \]
PRACTICE:

1) Archaeologists discovered a fragment of an ancient disk. To calculate the original diameter, they drew a chord \(AB \) and its perpendicular bisector \(PQ \). Find the diameter of the disk.

\[PR = 3 + x \]

\[PQ \cdot QR = AQ \cdot QB \]

\[(3)(x) = (5)(5) \]

\[3x = 25 \rightarrow x = \frac{25}{3} \]

Why couldn't you use the perpendicular bisector of a chord with a right triangle here?

\[\text{NO CENTER GIVEN - YOU DON'T KNOW RADIUS} \]

2) In the accompanying diagram, \(AFB, AEC, \) and \(BGC \) are tangent to circle \(O \) at \(F, E, \) and \(G \), respectively. If \(AB = 32 \), \(AE = 20 \), and \(EC = 24 \), find \(BC \).

\(O \) is the incenter of \(\triangle ABC \) and \(O \) is inscribed in \(\triangle ABC \).

\[BC = BG + GC = 12 + 24 = 36 \text{ UNITS} \]

Tangents to a circle from the same external point are equal.
3) Find the value of x in circle A.

\[2y = 2.4 \]
\[y = 1.2 \]

LOOK @ POINT OF INTERSECTION

**DIAM \(\neq \) CHORD \(\rightarrow \) NO BISECTING

\[p \cdot p = p \cdot p \]
\[(2.5)(x) = (2.4+y)(y) \]
\[2.5x = (3.6)(1.2) \]
\[2.5x = 4.32 \]
\[x = \frac{4.32}{2.5} \]
\[x = 1.728 \text{ cm} \]

Segment-Segment Relationships

Same Internal Pt: Chord-Chord

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Algebraic Equation

\[\frac{a}{x} = \frac{b}{y} \]

Derived from

\[\sim \triangle S \text{ FROM } AA \sim \]

DON'T JUMP CHORDS